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A new approach to visualizing spectral densities and analyzing
NMR relaxation data has been developed. By plotting the spectral
density function, J(ω), as F(ω) = 2ωJ(ω) on the log–log scale, the
distribution of motional correlation times can be easily visualized.
F(ω) is calculated from experimental data using a multi-Lorentzian
expansion that is insensitive to the number of Lorentzians used and
allows contributions from overall tumbling and internal motions
to be separated without explicitly determining values for corre-
lation times and their weighting coefficients. To demonstrate the
approach, 15N and 13C NMR relaxation data have been analyzed
for backbone NH and CαH groups in an α-helix-forming peptide
17mer and in a well-folded 138-residue protein, and the functions
F(ω) have been calculated and deconvoluted for contributions from
overall tumbling and internal motions. Overall tumbling correlation
time distribution maxima yield essentially the same overall corre-
lation times obtained using the Lipari–Szabo model and other stan-
dard NMR relaxation data analyses. Internal motional correlational
times for NH and CαH bond motions fall in the range from 100 ps
to about 1 ns. Slower overall molecular tumbling leads to better
separation of internal motional correlation time distributions from
those of overall tumbling. The usefulness of the approach rests in
its ability to visualize spectral densities and to define and separate
frequency distributions for molecular motions. C© 2001 Academic Press

Key Words: peptides; NMR; 13C and 15N relaxation; spectral
density; correlation time distributions.
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INTRODUCTION

One of the best ways to describe molecular motion is by
ing spectral density functions,J(ω), which present a distributio
of frequencies for overall molecular tumbling and internal m
tions of a given vector, one that usually connects two interac
dipoles. Although spectral density functions can be calcula
using optical and dielectric measurements, NMR relaxation
vides the most reliable data for calculatingJ(ω). In NMR, the
main relaxation parameters (R1 = 1/T1, R2 = 1/T2 and cross-
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relaxation rates calculated from NOE andT1 data) are linear
combinations ofJ(ωi ) at various frequencies. For13C NMR
relaxation, equations forR1, R2, and NOE can be written as

R1 = 1

10
kdd[ J(ωC− ωH)+ 3J(ωC)+ 6J(ωC+ ωH)]

+ 2

15
1σ 2ω2

CJ(ωC) [1a]

R2 = 1

20
kdd[ J(ωC− ωH)+ 3J(ωC)+ 6J(ωC+ ωH)

+ 4J(0)+ 6J(ωH)] + 1

45
1σ 2ω2

C[4J(0) [1b]

+ 3J(ωC)] + Rex

NOE= 1

10

γH

γC

kdd[6J(ωC+ ωH)− J(ωC− ωH)]

R1
, [1c]

wherekdd = nγ 2
Cγ

2
H hÃ 2/r 6

CH, γC andγH are magnetogyric ratios
for 13C and1H nuclei,hÃ is Plank’s constant divided by 2π , rCH

is the length of the C–H bond, andn is the number of protons
bonded to carbon. Equation [1c] is valid only forn = 1. For CH2

and CH3 groups, equations for the NOE are more complica
(1, 2).

As is evident in Eqs. [1], these relaxation parameters are
scribed by five spectral densities,J(0), J(ωC), J(ωH), J(ωH −
ωC), andJ(ωC + ωH) (for 13C relaxation), as well as by a term
to account for chemical exchange,Rex. Because these six un
known terms cannot be determined using only three exp
mental parameters, i.e.,R1, R2, and NOE, Peng and Wagne
(3, 4) proposed using additional, more complicated relaxat
experiments to be able to determine all five values ofJ(ω) at a
given magnetic field. In their analysis, values forJ(ω) that are
evaluated at select frequencies are independent of any mot
model or analytical form of the spectral density function. F
this, six relaxation parameters are measured:T1, T2, NOE, lon-
gitudinal two-spin order, transverse relaxation rates of antiph
2
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VISUALIZING SPECTRAL DENS

coherence, and the proton spin–lattice relaxation rate. This
proach is referred to as spectral density mapping. Lately, P
and Wagner (5 ), Farrowet al. (6 ), and Lefevreet al. (7 ) have
modified this original approach by considering various appr
imations for J(ω) at high frequency that allow the number
experimental parameters to be reduced. In fact, most inv
gators only determine three values of the spectral density f
tion, J(0), J(ωC(orN)), andJ(ωH), i.e., the probabilities of having
molecular motions at very low (ω = 0), intermediate (ω = ωC),
and high (ω = ωH) frequencies. Even though this information
very useful, many features of internal and overall motions m
be overlooked and it would be more informative to have a c
tinuous spectral density function covering the frequency ra
fromω = 0 toω = ωC+ ωH.

The solution to this problem is not trivial. Obviously, obtai
ing an infinite number of discrete values forJ(ω) is impossible.
However, one can consider some approximations to desc
J(ω) in this frequency range. The simplest one was first s
gested by Lipari and Szabo(8, 9), who used two Lorentzians
τ/(1+ τ 2ω2), to describeJ(ω):

J(ω) = S2 τo

1+ (ωτo)2
+ (1− S2)

τ

1+ (ωτ )2
. [2]

S2 is the squared order parameter,τo is the overall correlation
time, andτ = τoτi /(τo+ τi ) whereτi is the correlation time for
internal bond rotations. Although this approach works wel
many cases, particularly with well-structured proteins, Eq.
is, strictly speaking, only valid for very specific types of motio
the simplest being isotropic overall tumbling with one indep
dent internal motion described, for example, rotational jum
between two states. If, on the other hand, rotational jumps
cur between three nonequivalent states, then one needs a
three Lorentzians to defineJ(ω) (2, 10). More complicated
motions like wobbling-in-a-cone require an infinite number
Lorentzians (11, 12).

Some attempts have been made to describe molecular
tions in a more realistic fashion. The most popular way is
use a three-Lorentzian approximation where one considers
internal motional correlation times (13) as given by

J(ω) = S2 τo

1+ (ωτo)2
+ (1− S2

f

) τof

1+ (ωτof )2

+ (S2
f − S2

) τos

1+ (ωτos)2
. [3]

τof = τoτf/(τo + τf ) andτos= τoτs/(τo + τs). τs andτf are cor-
relation times for slow and fast internal motions. The squa
order parameter for fast internal motions,S2

f , mathematically
describes the fastest decay of the time correlation function.
terms for fast internal motions,τf and Sf , can be interpreted
as fluctuations within potential wells, whereas internal moti

described byτs define slower conformational jumps betwee
various states.
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The presence of anisotropic overall tumbling further com
cates analysis. Even for the simplest model of axially symme
overall tumbling with a single internal bond rotation,J(ω) is de-
fined by 12 Lorentzians (14), and at least two order paramete
are needed to describe internal motional restrictions. A m
realistic picture of molecular motion is much more complica
because a distribution of molecular shapes and overall co
lation times must be considered, not to mention the nume
types of internal motions. Proteins can display a very broad s
trum of internal motions ranging from the slowest motions
large structural units to the fastest fluctuations of small group
atoms. Therefore, the problem of describingJ(ω) as accurately
as possible becomes extremely important.

The best way to describeJ(ω) is by using a multi-Lorentzian
expansion, which for any motional model is given by

J(ω) =
N∑

i=0

ci τi

1+ (ωτi )2
, [4]

whereci are weighting coefficients with
∑N

i=0 ci = 1. Consid-
ered a model-free analysis of molecular motion, Eq. [4] c
be obtained from general considerations of molecular mot
(15, 16). Despite the complexity in interpreting the paramet
c andτ (8, 9), Eq. [4] is very useful for describing molecula
motions.

Using a sum of Lorentzians to describeJ(ω) has an advantag
over spectral density mapping (5). Because Eq. [4] is valid at an
magnetic field,Bo, performing NMR relaxation experiments
different values ofBo allows a large number ofc andτ param-
eters to be obtained. By usingT1, T2, NOE data acquired at
single field, three theoretical parameters,co, τo, andRex, can be
derived, while using data acquired at two fields, parameters
three Lorentzians,co, τo, c1, τ1, c2 = 1− c0 − c1, τ2, andWex,
can be obtained, and so on. Because the number of Lorentz
N, can be very large, one would, in principle, want to det
mine as many experimental parameters as possible. How
the problem of using a minimization protocol to find reasona
accurate values forc andτ is complicated, and for most inten
and purposes usually can only be done for two Lorentzians,
the Lipari–Szabo approach. To illustrate this point,ci andτi val-
ues calculated for two and three Lorentzians are plotted in Fi
Darkened areas in thesec–τ maps indicate regions of finding ac
ceptable sets forci andτi using relaxation parameters,Pi = T1,
T2, and NOE, at three magnetic fields (1H Larmor frequencies
νH = 250, 500, and 800 MHz). Standard errors in determin
Pi are less than 3%. It is apparent that a clear separation of co
butions from different Lorentzians can only be obtained for t
Lorentzians. Using three or more Lorentzians and experime
data having an average error greater than 3% yields no un
solution; i.e., accurate values forc andτ cannot be obtained
If anything, only the largest correlation times can be estima

nwithin reasonable error. Moreover, there is a problem of interpre-
tation. Even considering only two Lorentzians,τ1 cannot simply
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FIG. 1. A weighting coefficient–correlation time (c–τ ) map calculated us-
ing Eq. [4] with two (top and bottom panels) or three (middle panel) Lorentzia
Dark areas give the probability of finding values forc andτ that can account for
the relaxation parametersT1, T2, and NOE acquired at three magnetic fields (1H
frequencies,νH, of 250, 500, and 800 MHz).c andτ values within the dark areas
correspond to standard deviations of experimental parameters that are les
3% of parameters calculated for the given sets ofc andτ shown in the figure.

be interpreted as the correlation time for internal motion beca
it is a mixture of correlation times for overall tumbling and in
ternal motion (8, 9), and in a system with two internal motiona
correlation times,τs and τf , one needs to consider combin
tions of correlation times, 1/τo + 1/τs and 1/τo + 1/τs+ 1/τf

(13, 17), in addition to the correlation time for overall tum
bling. A similar problem arises when attempting to interp
values forci . Only in the simplest case, i.e., isotropic over
tumbling, can the coefficientc0 be interpreted as the order pa
rameter. All other coefficients are complicated combinations
various order parameters. For overall tumbling of an anisotro
molecule, evenc0 cannot be considered an order parameter. A
other problem of using a multi-Lorentzian approximation to d

rive values forτi andci lies in choosing the correct number o
Lorentzians that satisfactorily describe the motions of a giv
GAN, AND MAYO
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molecule. The bottom panel of Fig. 1 illustrates the case w
one tries to determine parameters for three Lorentzians from
two-Lorentzian curve. The resulting broad distributions dem
strate the fact that choosing an incorrect number of Lorentz
can lead to substantial errors in determining values foc
andτ .

For these reasons outlined above, an alternative approa
required. The present paper presents a novel approach th
scribes molecular motions as a distribution of correlation tim
This method is not limited by the number of Lorentzians a
avoids an explicit determination of values forci andτi .

METHODS AND MATERIALS

Peptide and protein production.Peptides having the amin
acid sequence GFSKAELAKARAAKRGGY were synthesiz
using standard Fmoc solid-phase methodology (18) and were
purified by HPLC using a linear acetonitrile/water gradient
described by Idiyatullinet al. (19). Five such peptides wer
made, each incorporating a single,13C/15N-enriched amino acid
(CIL, Cambridge). The residues enriched were F2, A5, L7,
and A10. Peptide purity was checked by MALDI-TOF ma
spectrometry and analytical HPLC on a C18 Bondclone (P
nomenex) column. The 138-residue protein MMOB (meth
monooxygenase component B) was produced as a recomb
protein as described by Changet al. (20). For this,E. coli con-
taining the expression system were grown on M9 minimal
dia containing15N-ammonium or13C-glucose, and MMOB wa
uniformly isotopically enriched in either15N or 13C. For some
13C relaxation experiments on MMOB, enrichment in13C was
only to 40%.

NMR. For NMR measurements, freeze-dried samples w
dissolved in D2O for 13C relaxation measurements or in
H2O/D2O (90/10) mixture for15N relaxation measurement
Peptide concentration, determined from the dry weight of free
dried samples, was 15 mg/mL. The pH was adjusted to p
by adding microliter quantities of NaOD or DCl. NMR rela
ation experiments were performed on Varian Inova-500, 6
800 NMR spectrometers equipped with triple-resonance pr
and on a Bruker AM-250 NMR spectrometer. The tempera
was varied from 5 to 30◦C. Temperature calibration was pe
formed by using chemical shifts of resonances from metha
Under these experimental conditions, pulse field gradient (P
self-diffusion measurements indicated that aggregation wa
occurring (19).

Relaxation measurements on the peptide.13C spin–lattice
relaxation rates with the peptide 17mer were determined
using the direct homonuclear inversion-recovery method w
a composite 180◦ pulse (90◦x–180◦y–90◦x). In all experiments
broadband1H decoupling GARP (21) was used. The num
ber of acquisitions was chosen to have a signal-to-noise

f
en
tio greater than 70. Therefore, the number of transients var-
ied from 200 to 1000. Ten to 15 time incremented (partially



IT

ti

r
i-

o

a

t
e
n

e

e
h

p

u

f
r
u

i
e
b
i
t
o

n

a

n
w

ir

ard
nd

-
d to
em-

dient
e

ress
d a

y was

nces

the

la-

-

m-
tions

erms
pa-
ical
or

he
ies

ni-
ax-
ex-
er
cted
en-

sities were equal. This reasonable assumption contributed less
VISUALIZING SPECTRAL DENS

relaxed) spectra were routinely acquired for each relaxa
measurement.13C spin–spin relaxation rates were measured
using the proton-detected HSQC pulse sequence as desc
below for the15N Carr–Purcell–Maiboom–Gill (CPMG) exper
ment (22) with some modification. Since each13C nucleus in this
peptide has at least one13C-bonded carbon,J-coupling induces
oscillations between in- and anti-phase coherence that m
lates the spin-echo decay (23) and thus precludes measuringT2

relaxation times with the CPMG pulse sequence. To elimin
effects fromJ-coupling, soft rectangular pulses at the13C reso-
nance of interest were used. The duration,d, of the 180◦ pulse
was 0.4 to 0.7 ms, and the time delay,t , in the CPMG pulse
train was 0.9 ms. During the relaxation time,15N and1H broad-
band WALTZ-16 decoupling (24) was used. For13Cα relaxation,
soft13C pulses applied at the resonance of interest are selec
therefore, with each 180◦ pulse, the sign of the anti-phase coh
ence changes and the contribution is eliminated. The smooth
in theT2 relaxation decay curves indicates that effects fromJ-
coupling have been eliminated. Using this method,T2 values
are in good agreement withT2 values measured by using th
spin-locking experiment with small RF fields. This approach
measuringT2 relaxation curves that are devoid ofJ-coupling
effects, is, in effect, a combination of CPMG and spin-lock
periments. Relaxation rates were determined by using met
described by Daraganet al. (25), and 13C–{1H} NOE coeffi-
cients were measured by using the standard gated-decou
technique.

15N spin–lattice and spin–spin relaxation rates were meas
by using the HSQC sequence reported by Farrowet al. (22).
This pulse sequence employs pulsed field gradients for the
herence transfer pathway whereby magnetization passes
1H to 15N and back again to1H for observation. The wate
flip-back method was used to minimize water saturation d
ing the pulse sequence. During the relaxation time,13C broad-
band decoupling (13CαH region) WALTZ-16 (24) was used. The
delay in the CPMG train was 0.9 ms. Spin–lattice and sp
spin relaxation decays for all residues follow single expon
tial decays, except for F2, which shows two distinguisha
exponents. After carrying out additional experiments with d
ferent concentrations of D2O in H2O, it was determined tha
the initial fast decay is related to proton detection and prot
deuterium exchange. Therefore, to more accurately determ
relaxation parameters for F2, the slower decaying compo
was used. Steady-state{1H}–15N NOEs were determined from
spectra recorded in the presence and absence of proton s
tion (23). Saturation was achieved by application of 120◦ 1H
pulses every 5 ms (26) during repetition times of 5 s. Whe
proton saturation was absent, a net relaxation delay of 10 s
used. Five pairs of these spectra were recorded in the same
and data reported here are the average of these five pa
spectra.

Relaxation measurements on the protein.For the protein

MMOB, 2D NMR versions of relaxation experiments were use
IES AND CORRELATION TIMES 135
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essentially as described above for the peptide.15NH T1, T2,
and {1H}–15N NOEs were measured by using the stand
inversion recovery, Carr–Purcell–Meiboom–Gill (CPMG) a
steady-state NOE pulse sequences, respectively (22). Relax-
ation delays for15NH T1 and T2 were placed before the evo
lution period, and double INEPT pulse sequences were use
increase sensitivity, and a reverse INEPT sequence was
ployed to enhance steady-state NOEs. In all cases, gra
sensitivity-enhanced pulse sequences were used. Repetitiv1H
180◦ pulses were applied during relaxation delays to supp
cross-correlation between dipolar and CSA relaxation, an
1.25-ms delay was given between 180◦ pulses in the CPMG
pulse sequence. For NOE measurements, a 3-s recycle dela
used, followed by 3 s of1H saturation. For13CαH T1 and NOE
studies, the same relaxation experiments were used. For13CαH
T2 measurements, however, off-resonance rotating frameT1ρ

relaxation experiments were performed using pulse seque
described by Zinn-Justinet al. (27) and by Mulderet al. (28).
1/T1ρ = R1ρ can be expressed asR1ρ = R1 cos2 θ + R2 sin2 θ ,
whereθ is the angle between the effective spin-lock field and
B0 field. To further reduce effects from13C–13C scalar coupling
and dipolar coupling between adjacent carbons in uniformly
belled13C-enriched proteins (29), MMOB was13C-enriched to
only 40%.

Analysis of relaxation data. Motional parameters were de
termined by using a Monte Carlo minimization protocol (25).
The function to be minimized is

χ2 =
∑

i

[(
Ri

1exp− Ri
1theor

)/
σR1

]2+ [(Ri
2exp− Ri

2theor

)/
σR2

]2
+ [(NOEi

exp− NOEi
theor

)/
σNOE

]2
, [5]

whereRi
1exp, Ri

2exp,NOEi
exp are experimental values andRi

1theor,
Ri

2theor, NOEi
theorare calculated values of NMR relaxation para

eters and expressed as spectral densities of molecular mo
as defined by equations presented in the Introduction. The t
σR1,σR2, andσNOE are the standard errors of the experimental
rameters. During minimization, the contribution due to chem
exchange,Rex, was taken as being proportional to the Larm
frequency squared because Nesmelovaet al.(30) demonstrated
that the helix-forming peptide is at the fast-exchange limit. T
summation in Eq. [5] was performed over all NMR frequenc
for which data were acquired.

In addition, dipolar coupling between adjacent carbons in u
formly 13C-labeled amino acids can contribute to carbon rel
ation rates. In general, the effect is greater for molecules
hibiting larger overall tumbling correlation times and at high
magnetic fields. Because of this, relaxation data were corre
by assuming that contributions from C–H and C–C spectral d
d,than 2% to the error in calculating relaxation rates.
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RESULTS AND DISCUSSION

Visualizing Spectral Density Functions

Figure 2A illustrates the standard graphical representatio
a spectral density function,J(ω), consisting of two Lorentzians
with c0 = 0.7, τ0 = 8000 ps,c1 = 0.3, andτ1 = 100 ps. These
are realistic motional parameters for a globular protein in wa
and having a molecular weight of about 15,000 or for a pep
in water/TFE (higher viscosity) having a molecular weight
about 4,000. From this plot ofJ(ω) it is difficult or impossi-
ble to garner any meaningful information on molecular motio
However, when plotted on a log scale, this same spectral den
function shows two inflections or “steps” (Fig. 2B) that ma
be used to estimate correlation times by taking their positi
on theX axis asωi = 1/τi . To better visualize this, conside
the functionF(ω) = 2ωJ(ω) as plotted in Fig. 2C. This way
of visualizing J(ω) forms the basis of this new approach th
aims to derive more meaningful information on molecular m
tions.F(ω) has some interesting properties. For instance, w
motional correlation times are significantly different,F(ω) con-

FIG. 2. Various presentations of the spectral density functionJ(ω). (A)
J(ω) calculated using two Lorentzians withτ0 = 8000 ps,τ1 = 100 ps,c0 =
0.7, c1 = 0.3. (B) The sameJ(ω) plotted on the log scale. (C) The sam
J(ω) plotted as the functionF(ω) = 2ωJ(ω). In (C), two well-separated peak

positioned atω0 = 1/τ0 andω1 = 1/τ1 are observed and their amplitudes a
approximately equal to the weighting coefficientsc0 andc1.
GAN, AND MAYO
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sists of fairly resolved, broad bands or peaks that are symme
with their frequency maxima,ωi , corresponding to the inverse o
their correlation times, i.e.,ωi ≈ 1/τi , and the position of their
maxima on theYaxis corresponding to coefficientsci given in
Eq. [4]:

ωmaxi ≈ 1/τi [6a]

F(ωmaxi ) ≈ ci . [6b]

As the difference in correlation times becomes larger, Eqs. [
and [6b] become more exact. To prove this, consider a sin
Lorentzian,F(ω) = 2ωτ/(1+ ω2τ 2) as shown in Fig. 3A. The
first derivative of this function is zero whenωmax = 1/τ and
F(ωmax) = 1. The linewidth of the peak can be defined in term
of the ratios

ωR/ωmax= ωmax/ωL, [7]

where

F(ωR) = 0.5F(ωmax) ωR > ωmax

F(ωL) = 0.5F(ωmax) ωL < ωmax.

For a single Lorentzian, ratios in Eq. [7] do not depend on t
correlation time,τ , and the ratioωmax/ωL equalsωR/ωmax with
both being equal to 2+ √3 = 3.73. These ratios are likewise
equal to (2−√3)−1 = 3.73. The high- and low-frequency tails
of F(ω) = 2cωτ/(1+ ω2τ 2) are given by

F(ω)→ 2cωτ asω→ 0 [8a]

F(ω)→ 2c/ωτ asω→∞. [8b]

These limits are described by linear equations

Log(F(ω)) = Log(2cτ )+ Log(ω) for ω→ 0 [9a]

Log(F(ω)) = Log(2c/τ )− Log(ω) for ω→∞, [9b]

such that the high- and low-frequency sides of the sin
Lorentzian functionF(ω) are straight lines with slopes of+45◦

and−45◦, respectively. These lines intersect atω= 1/τ to give
a value of 2c read from theY axis (see Fig. 3A).

With two well-defined and equally weighted Lorentzians,
log–log plot ofF(ω) yields two peaks approximately positione
atω1= 1/τ1 andω2= 1/τ2 with the heights of the peaks bein
approximately equal toc1 andc2. The peak at lower frequency
corresponds to the larger correlation time. Peak resolution
pends on the values ofτ1 andτ2 and the weighting coefficients
c1 andc2. Individual peaks become resolved at a ratioτ1/τ2 ≈
6, and optimal resolution is obtained whenc1 = c2. In this case,
the spectrum is symmetric relative toω0,

1

ω0 = √

τ1τ2
, [10]
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FIG. 3. Spectral density functions plotted asF(ω) = 2ωJ(ω). (A) F(ω) calculated using a single Lorentzian. (B)F(ω) calculated using two Lorentzians and

various values forτ andτ with c = c = 0.5. (C) F(ω) calculated using two Lorentzians and various values forτ1 andτ2 with c1 = 0.7 andc2 = 0.3. (D) F(ω)
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calculated using a rectangular distribution of correlation times as describe

which is the position of the maximum whenF(ω, τ1) and
F(ω, τ2) are not resolved or the position of the central min
mum when they are resolved. ForF(ω)= F(ω, τ1)+ F(ω, τ2),
F(ω) is defined as

F(ω0) = 2
√
τ1τ2

τ1+ τ2
, [11]

whenc1 = c2= 1/2 andω = ω0. The high- and low-frequency
maxima (if any) are positioned atω1 andω2:

ω1,2 = |τ1− τ2| ±
√

(τ1− τ2)2− 4τ1τ2

2τ1τ2
. [12]

For the peaks to be resolved,τ1 should be greater thanτ2 ac-
cording to the condition

τ1/τ2 > 3+ 2
√

2≈ 5.8. [13]
When inequality [13] is true, two maxima are observe
in the text.

i-
Figure 3B plotsF(ω)= F(ω, τ1)+F(ω, τ2) for different values
of the ratioτ2/τ1 when c1= c2= 0.5. The lines remain sym
metric, but become broader as the ratio of correlation time
increased.

When c1 and c2 are not equal, equations for the ma
mum positions become more complicated. Figure 3C p
F(ω)= F(ω, τ1)+ F(ω, τ2) for c1= 0.7 andc2= 0.3 at differ-
ent values of the ratio of correlation times. Asτ2/τ1 increases
from unity, F(ω) becomes more asymmetric, and on approa
ing τ2/τ1= 20, component peaks become apparent. When
alyzing actual experimental data, it is important to remem
that the low-frequency side ofF(ω) provides information on the
contribution from overall molecular tumbling motions, where
the higher frequency side ofF(ω) contains contributions from
both overall tumbling and internal motions.

In reality, a few discrete correlation times may not
sufficient to account for the relaxation data. This situation m
exist, for example, with macromolecules where overall co
d.
lation times may, in fact, be some distribution due to various
factors, e.g., slow conformational fluctuations, aggregation, and
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complex formation. To exemplify this, consider the simple
case of a rectangular distribution with limits fromτ1 to τ2 (and
τ2 > τ1). With τ = (τ1 + τ2)/2, F(ω) for this distribution can
be expressed as

F(ω, ε) = 1

τ2− τ1

τ2∫
τ1

2ωτ

1+ ω2τ 2
dτ

= 1

2ωτε
ln

(
1+ ω2τ 2(1+ ε)2

1+ ω2τ 2(1− ε)2

)
, [14]

where

ε = (τ2− τ1)/2τ [15]

is the width of the correlation time distribution at half-heig
[F(ω, ε)= 0.5] relative to its average correlation time,τ .
Figure 3D plotsF(ω, ε) for different values ofε. Note that at
small values ofε, F(ω, ε) does not differ significantly from the
single Lorentzian function,F(ω), and whenε becomes large,
F(ω, ε) becomes asymmetric with its maximum being shift
to lower frequency. This asymmetry can be used, therefore
find the presence of a distribution of correlation times.

One of the most significant problems in determiningJ(ω)
using NMR relaxation data arises when trying to derive t
parametersci andτi with a set number of Lorentzians that i
insufficient to describe the spectral density function (31). This
has been exemplified in Fig. 1C. Using the new approach w
F(ω)= 2ωJ(ω) circumvents this problem becauseF(ω) and
the error in minimization do not depend on the number
Lorentzians used. Figure 4 shows the standard deviation,χ2,
of the calculated curve from the theoretical curve as a fu
tion of the number of Lorentzians,N, used in the minimization
protocol. The theoretical function,F(ω), was created using 6
Lorentzians withτ0= 8000 ps,c0= 0.3, τ1= 7000 ps,c1= 0.3,
τ2= 1500 ps, c2= 0.2, τ3= 500 ps, c3= 0.1, τ4= 100 ps,
c4= 0.05, τ5= 20 ps,c5= 0.05, and the chemical exchang
term Rex set at 2 s−1 (at 1H frequency of 800 MHz). These
parameters are representative of some motional vector wi
a protein of molecular weight about 15,000. For this calcu
tion, it was assumed thatT1, T2, NOE data were measured a
three spectrometer frequencies (νH= 250, 500, and 800 MHz).
Theoretically, only four Lorentzians can be used to fit nine e
perimental parameters. However, with the new approach,
limitation of using a larger number of Lorentzians (up to 8
shown in Fig. 4) is avoided. In fact, data can be better fitted
ing a larger number of Lorentzians. Nevertheless, determina
of a number ofci andτi values that is larger than the numbe
of experimental parameters cannot be done. This approach
allows the functionF(ω) to be determined. Figure 4 also plo
minimization-derived values forRex vs N and shows that using

this approach,Rex can be determined accurately withN= 3 or
higher.
AN, AND MAYO
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FIG. 4. The χ2 error in fitting F(ω) as a function of number o
Lorentzians used in the minimization procedure. Here,F(ω) is described by
6 Lorentzians withτ0= 8000 ps,c0= 0.3, τ1= 7000 ps,c1= 0.3,τ2= 1500 ps,
c2= 0.2, τ3= 500 ps,c3= 0.1, τ4= 100 ps,c4= 0.05, τ5= 20 ps,c5= 0.05.
The minimization procedure was performed usingT1, T2, and NOE values ac-
quired at three magnetic fields (1H frequencies,νH, of 250, 500, and 800 MHz)
At the top of the figure, the exchange terms,Rex, at 800 MHz (1H frequency) that
result from minimization are also plotted vs the number of Lorentzians use

Separating Overall Tumbling from Internal Motions

In this section, an approach that can be used to deconv
F(ω) into components for overall tumbling,Fo(ω), and internal
motions,Fi (ω), is reported. In general,F(ω) can be expresse
as

F(ω) = Fo(ω)+ Fi (ω). [16]

From Eq. [4], an important property ofF(ω) at low frequency
is evident

Log(F(ω))= Log(2J(0))+ Log(ω) asτ0ω→ 0, [17]

where

J(0)=
∑

ci τi [18]

is defined as the average correlation time.J(0), which is approx-
imately equal toc0τ0, can be determined using Eq. [17], and
estimate ofτ0 can be derived from the low-frequency maximu

F(ωmax), which is usually primarily the result of overall tum-
bling motions. For the two correlation time model withτ1¿ τ0,
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VISUALIZING SPECTRAL DENS

approximate equations can be obtained for

ωmax≈ 1

τ0

(
1+ 2c1τ1

c0τ0

)
[19a]

and

F(ωmax) ≈ c0

(
1+ 2c1τ1

c0τ0

)
. [19b]

Using these equations,τ0 andc0 can be determined with rea
sonable accuracy from the position of the maximum,ωmax, and
the value ofF(ωmax), and these values can, in turn, be used
initial approximations to separateF0(ω) andFi (ω) from F(ω).
To achieve this deconvolution, a simple algorithm can be us

1. Defineτ0 = 1/ωmax; c0 = F(ωmax)
2. EstimateFi (ω) asFi (ω) = F(ω)− 2ωτ0c0/(1+ω2τ 2

0 ) (the
low-frequency region is approximated by a single Lorentzia

3. Find the maximum ofFi (ω), and setτ1 = ωmax and
c1= Fi (ωmax)

4. Redefine Fo(ω) as Fo(ω)= F(ω)− 2ωτ1c1/(1+ω2τ 2
1 )

(the high-frequency regionFi (ω) is approximated by a singl
Lorentzian)

5. Defineτ0 = 1/ωmax; c0 = Fo(ωmax)
6. Repeat steps 2–5.

Usually, three to five iterations are sufficient to obtainFi (ω)
accurately. Figure 5A shows the use of this algorithm
calculate Fi (ω) with 5 Lorentzians and a single correl

FIG. 5. Spectral densities calculated using the deconvolution a
rithm. (A) Solid line: parent functionF(ω) calculated using 5 Lorentzian
with c0= 0.7, τ0= 8000 ps; c1= 0.1, τ1= 1000 ps; c2= 0.1, τ2= 700 ps;
c3= 0.05, τ3=200 ps;c4= 0.05, τ4= 20 ps. Dotted line: component ofF(ω)
due to internal motions,Fi (ω). Dashed line: internal motional compone
Fi (ω) resulting from minimization using the deconvolution algorithm. (B) So
line: parent functionF(ω) calculated using 6 Lorentzians withc0= 0.2, τ0=
8000 ps;c1= 0.2, τ1= 7000 ps;c2= 0.2, τ2= 6000 ps;c3= 0.2, τ3= 1000 ps;

c4= 0.1, τ4= 200 ps;c5= 0.1, τ5= 20 ps. Dotted line:Fi (ω). Dashed line:
Fi (ω) resulting from minimization using the deconvolution algorithm.
IES AND CORRELATION TIMES 139
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tion time for overall tumbling. For this calculation,c and τ
were taken asc0= 0.7, τ0= 8000 ps;c1= 0.1, τ1= 1000 ps;
c2= 0.1, τ2= 700 ps;c3= 0.05, τ3= 200 ps,c4= 0.05, τ4=
20 ps. The dotted line representsFi (ω) calculated using these
c and τ values, and the dashed line representsFi (ω) de-
termined by minimization using the algorithm given abov
Figure 5B shows the results of minimization using a distrib
tion of overall tumbling correlation times.The correspondin
parameters forc andτ for this calculation werec0= 0.2, τ0=
8000 ps;c1= 0.2,τ1= 7000 ps;c2= 0.2,τ2= 6000 ps;c3= 0.2,
τ3= 1000 ps;c4= 0.1, τ4= 200 ps;c5= 0.1, τ5= 20 ps. In this
case,Fi (ω) is not as smooth around theτ0 frequency region. In
an actual situation using experimental data, such low-freque
inflections can indicate the presence of a distribution of corre
tion times for overall tumbling In both these cases, the algorith
is effective at deconvolutingFi (ω).

Additionally, correlation times for overall molecular tumbling
can be determined using another property of spectral dens
defined inF3(ω):

F3(ω) = 2(J(0)− J(ω))/ω. [20]

Assuming that the spectral density can be described as the
of Lorentzians,

F3(ω) =
∑ 2ciωτ

3
i

1+ ω2τ 2
i

. [21]

Although F3(ω) is similar to F(ω), correlation times in the
numerator are raised to the third power. This dramatically
creases contributions from the largest correlation times, i
usually those of overall tumbling. In this regard,F3(ω) pri-
marily contains information about overall tumbling motions
Figure 6A plots F(ω) (solid line) and F3(ω) (dashed line)
for two Lorentzians withc0= 0.6, τ0= 8000 ps;c1= 0.4, τ1 =
1000 ps. A more accurate estimate ofτ0 is given by theF3(ω)
maximum, i.e.,τ0 = 1/ωmax. This property ofF3(ω), therefore,
can be used to better describe low-frequency molecular moti
and to help separate out contributions from internal motions

For peptides and small proteins, internal motions usually co
tribute most toF(ω) at higher frequencies than does overa
tumbling. This component ofF(ω) is Fi (ω) in Eq. [16]. The
accuracy in determiningFi (ω) depends on the separation o
overall and internal motional correlation times and the num
ber of Lorentzians used to obtainF(ω). Figure 6B shows the
results of fittingFi (ω) with N= 2, 3, 4 and using calculated
13C NMR relaxation parameters for three spectrometers f
quencies (νH = 250, 500, and 800 MHz). For this calculation
the following parameters were used:τ0= 8000 ps,c0= 0.3,τ1=
7000 ps,c1= 0.3, τ2= 1500 ps,c2= 0.2, τ3= 500 ps,c3= 0.1,
τ4= 100 ps,c4= 0.05, τ5= 20 ps,c5= 0.05, andRex= 2 s−1.
Deconvolution to determineFi (ω) was performed using the algo

rithm described above. Figure 6B demonstrates that by using
only two Lorentzians (the Lipari-Szabo approach),Fi (ω) cannot
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FIG. 6. Spectral densities calculated using Eq. [21]. (A) Parent functi
F(ω) (solid line) andF3(ω) (dashed line) calculated using two Lorentzia
with c0 = 0.6, τ0 = 8000 ps;c1 = 0.4, τ1 = 1000 ps. As discussed in the tex
F3(ω) provides information primarily about overall tumbling motions. (B) r
sults of deriving contributions toF(ω) (solid line) from internal motions,Fi (ω).
Calculations were performed usingN= 2 Lorentzians (dotted line),N= 3
Lorentzians (long dashed line), andN= 4 Lorentzians (short dashed line
For these calculations,13C NMR relaxation parameters calculated for thr
magnetic fields (νH= 250, 500, and 800 MHz) were used. Motional paramete
used wereτ0= 8000 ps,c0= 0.3;τ1= 7000 ps,c1= 0.3;τ2= 1500 ps,c2= 0.2;
τ3= 500 ps,c3= 0.1; τ4 = 100 ps,c4= 0.05;τ5= 20 ps,c5= 0.05, andRex =
2 s−1. Inset showsFi (ω) calculated using three Lorentzians and13C relaxation
data acquired at three (νH=ωH/2π = 250, 500, and 800 MHz) (dashed lines
and at two (νH= 500 and 800 MHz) (dotted lines) magnetic fields. Solid lin
give actual functionsF(ω) andFi (ω) derived using the relaxation data.

be determined accurately. On the other hand, using three or m
Lorentzians does allowFi (ω) to be determined fairly accurately

For many researchers, performing relaxation experiment
multiple spectrometer frequencies is not possible. Therefor
is important to understand the influence of using a set num
of experiments to fitF(ω). The inset to Fig. 6B showsFi (ω)
calculated using experimental13C relaxation data acquired a
three (νH= 250, 500, and 800 MHz) and at two (νH= 500 and
800 MHz) spectrometer frequencies. It is apparent that e

using two magnetic fields (particularlyνH= 800 MHz) is suffi-
cient to satisfactorily defineFi (ω).
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As discussed above, the error resulting from using the m
imization protocol is relatively small. The main source of
ror in determiningF(ω) rests in the experimental error, i.e
in the NMR relaxation parameters themselves. Since this e
depends in part on the frequencyω, it should be minimal in
the vicinity ofωi = 0, ωC, ωC + ωH, ωC − ωH, andωH, which
are explicit frequency terms found in the equations forT1, T2,
and NOE. For proteins where overall correlation times at ro
temperature are usually in the range 4000 to 7000 ps, the
of 13C relaxation data may be ineffective at determining
low-frequency component ofF(ω), i.e., Fo(ω). Even at a spec
trometer frequency as low asνC= 62.5 MHz (νH = 250 MHz),
the corresponding value of 1/ωC is only about 2500 ps. This
is a typical value for overall tumbling correlation times of pe
tides at lower temperature, but not usually for proteins lar
than about 50 residues. Using15N NMR relaxation data ac
quired atνH= 250 MHz can be much more effective becau
1/ωN is about 6600 ps, and this is much closer to the ty
cal value of overall correlation times for proteins. For practi
consideration, Fig. 7 plots correlation times that correspon

FIG. 7. Correlation times are plotted vs frequencies that correspon
ωC(N), ωC(N) + ωH, ωC(N) − ωH andωH for different magnetic field strengths
For simplicity,X-axis values are shown asνH. At νH = 500 MHz, dashed lines

indicate that reliable information can be obtained for correlation times from 260
to 3100 ps.
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FIG. 8. Curves (a): Error corridors for parent functionF(ω) corresponding to 5 and 2% error in the experimental NMR relaxation parameters (T1, T2, NOE) are
indicated. Calculations ofF(ω) were performed using 6 Lorentzians withτ0 = 8000 ps,c0 = 0.3;τ1 = 7000 ps,c1 = 0.3;τ2 = 1500 ps,c2 = 0.2;τ3 = 500 ps,
c3 = 0.1;τ4 = 100 ps,c4 = 0.05;τ5 = 20 ps,c5 = 0.05. The chemical exchange term,Rex, was set equal to 2 s−1. Calculated13C and15N NMR relaxation

parameters were analyzed for two sets of magnetic field strengths:νH = 250, 500, 800 MHz andνH = 500, 600, and 800 MHz. Curves (b): Corridors of error for
F(ω) calculated using three Lorentzians defined byτ0 = 3000 ps,c0 = 0.7;τ1 = 500 ps,c1 = 0.1;τ2 = 100 ps,c2 = 0.2; andRex = 2 s−1.
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frequenciesωC(N), ωC(N)+ωH, ωC(N)−ωH andωH, as a func-
tion of spectrometer1H frequency,νH. This illustration indi-
cates that only internal motions exhibiting correlation times
100 ps or greater can be derived. In fact, using data acqu
only atνH =500 MHz yields the most reliable information fo
correlation times between 260 and 3100 ps.

To better assess the influence of experimental error onF(ω),
calculations were performed at every point onF(ω) that cor-
responds to Gaussian distributions of the experimental N
relaxation parametersT1, T2, NOE. Results of this calculation
are illustrated in Fig. 8, which illustrates the corridor of error
F(ω) given by

1

N

∑(
Pi − Pi 0

erri

)2

< 1. [22]

Pi are values of relaxation parameters (T1, T2, NOE) that have
been calculated forc, andτ where inequality [22] is true.Pi 0 are
values of relaxation parameters that give the exact solutionN
is the number of experiments. Errors, erri , are given as standar
deviations for the distribution of experimental parameters. T

calculation was performed for erri = 0.05 and for erri = 0.02.
The c and τ parameters that defineF(ω) are τ0= 8000 ps,
of
ired
r

R

in

.

he

c0= 0.3, τ1= 7000 ps,c1= 0.3, τ2= 1500 ps,c2= 0.2, τ3=
500 ps,c3= 0.1, τ4= 100 ps,c4= 0.05, τ5= 20 ps,c5= 0.05,
with Rex= 2s−1. 13C and15N NMR relaxation data were ana
lyzed for two sets of spectrometer frequencies: (1)νH = 250,
500, and 800 MHz and (2)νH = 500, 600, and 800 MHz. Th
corridors of error can be interpreted as regions whereinF(ω) is
given with 67% probability. As expected, the narrowest co
dors of error are observed at points close to 0,ωC(N),ωC(N)+ωH,
ωC(N)−ωH, andωH. As mentioned above, it is clear that using15N
relaxation data and, therefore, lower spectrometer frequen
allows a more accurate definition of the low-frequency region
F(ω) that is dominated by contributions from overall molecu
tumbling motions.

Figure 8 also shows corridors of error forF(ω) calculated
using three Lorentzians defined byτ0 = 3000 ps,c0 = 0.7,τ1 =
500 ps,c1 = 0.1, τ2 = 100 ps,c2 = 0.2, andRex = 2 s−1. The
calculation was performed for an erri = 0.03. Use of a smaller
overall tumbling time shifts the curves to higher frequency (
curves shifted to the right in the figure). Note that in this ca
errors are much smaller, and even using data acquired at
field allowsF(ω) to be determined quite accurately over a wid

frequency range. In this regard, overall tumbling parameters can
only be determined accurately for peptides and small proteins
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using13C NMR relaxation data acquired at high temperatu
where overall correlation times are less than about 4000
As already mentioned,15N NMR relaxation data that reache
lower frequencies should be used with larger, slower tumb
molecules.

The extent to which experimental errors contribute toF(ω)
can be estimated by considering thatPk are experimental param
eters (T1, T2, NOE) acquired at various spectrometer frequenc
andRi

k are relaxation parameters obtained for a randomly g
erated set ofci andτi with Fi (ω) being the functionF(ω) for a
given set ofci , τi , such that

χ2
i =

∑
k

(
Pi

k − Rk

σk

)2

, [23]

whereσk are standard deviations (errors) from experimental
rameters,Pk. F(ω), calculated by using the Monte Carlo metho
is given by

F(ω) =
∑

Fi (ω)pi∑
pi

, [24]

where

pi = exp
(−χ2

i

/
2
)
. [25]

Since the speed and accuracy of this calculation depends
the selection ofci , τi , it is better to perform summations ofFi (ω)
over small values ofχ2

i where a Gaussian distribution forFi (ω)
may be assumed. Therefore, this approach does not allow va
of ci , τi to be derived explicitly because there are numero
combinations of these parameters that yield very similar val
of F(ω). Of utmost importance to this discussion is that t
functionF(ω) itself can be determined accurately. For all inten
and purposes, the corridors of error inF(ω) depend only on
experimental errors arising from the relaxation data, and us
relaxation data acquired at multiple spectrometer frequen
substantially narrows this corridor of error.

Application to anα-Helix-Forming Peptide

13CαH and15NH relaxation data were acquired on the hydr
phobic staple,α-helix-forming peptide GFSKAELAKARA-
AKRGGY (32). The N-terminal part of the peptide contain
a hydrophobic staple formed primarily from F2 and L7 th
stabilizes the helix-forming part of the peptide running from A
through A13. This structure is most stable at lower temperat
i.e., 5◦C, and in the presence of TFE (31). Relaxation data on
this peptide have been acquired and include spin–lattice (T1) and
spin–spin (T2) relaxation times, as well as heteronuclear NOE
{1H}–13C and{1H}–15N, measured at four Larmor precessio

frequencies (1H frequencies of 250, 500, 600, and 800 MHz
and at temperatures between 5 and 30◦C. Measurements were
GAN, AND MAYO
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performed in water and in water/TFE (60/40, v/v). Examples
of the raw data have been presented elsewhere (19). With these
data,F(ω) = 2ωJ(ω) and the corresponding spectral dens
functions, J(ω), were determined over the frequency ran
0<ω<6.28× 109 rad/s using Monte Carlo minimization.

Figures 9 and 10 illustrate results of calculatingF(ω) for
CαH and NH backbone bonds in theα-helix-forming peptide in
water and in water/TFE as a function of temperature. Error
determiningF(ω) were calculated using Eq. [24]. These erro
are indicated with vertical bars only for residue A10 in Figs
and 10. Similar errors are observed with other residues. N
that the error inF(ω) increases at lower and higher motion
frequencies where the actual NMR spectrometer frequen
limit the experimentally accessible frequency range for13C and
15N nuclei. Nevertheless, the frequency range shown does c
three decades from 10 to 10,000 MHz (10 GHz). Solid circles
the curve represent frequenciesωC(N) andωC(N) ± ωH at which
experimental data were collected. The point atJ(ω) = 0 is not
shown on thisF(ω) plot due to the use of the log scale. This h
been done only for residues F2, A5, L7, and A8 of the pep
at 5◦C.

Because this is a new approach, one might ask how acc
is it in correctly reporting motional frequencies. Three obs
vations in particular render confidence in this approach. Firs
the inverse of theX-axis position of theF(ω) maxima at low-
frequency essentially corresponds to overall tumbling corr
tion times derived using the Lipari–Szabo and other motio
models (19). For example, for the peptide in water at 5◦C, the
L7 15NH group gives aF(ω) maxima at about 500 MHz, th
inverse of which is the motional correlation time of 2 ns. Us
the Lipari–Szabo model free approach and these same relax
data, Idiyatullinet al. (19) derived a correlation time of 1.8 ns
Similar comparisons can be made with other residues. Seco
F(ω) curves demonstrate a smooth transition with change
temperature and their maxima shift to lower frequency (to
left in the figure) as the temperature is decreased. Physic
this should be the case because these maxima are most
tributable to overall molecular tumbling motions that shou
become slower at lower temperature. Thirdly, addition of T
has the same effect on the overall tumbling time as does lo
ing temperature. This too is expected because TFE incre
solution viscosity and, therefore, should yield larger ove
tumbling correlation times and shiftF(ω) maxima to lower
frequency.

Although F(ω) is generally dominated by overall tumblin
motions, contributions from faster internal motions are of
apparent on the high-frequency side of these curves. In s
instances, a shoulder or a minor second maxima is obse
In others, the function merely appears asymmetric or bro
ened on the high-frequency side. The later case is mostly
served for13CαH and 15NH internal motions of the peptid
in water alone, and only for F2 is a high-frequency com

)nent readily observable. For F2,F(ω) becomes rather flat at
higher frequencies, indicating internal motional contributions
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FIG. 9. FunctionsF(ω) have been calculated using experimental data for five13CαH backbone bonds (residues F2, A5, L7, A8, and A10) in theα-helix-forming

peptide in water and in water/TFE. Data are shown for temperatures from 5 to 30◦C. Solid circles on the curve represent frequenciesωC(N) andωC(N) ± ωH at
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which experimental data were collected. The value atJ(ω) = 0 is not shown on

with correlation times from 100 ps to 1 ns. These relative
faster motions are related to the fact that F2 is more interna
mobile by virtue of it being at the N-terminus. In fact, for the F
15NH group at higher temperatures, internal motions contrib
more to the spectral density function than do overall tumbli
motions.

In water/TFE, on the other hand, where slower overall tu
bling of the molecule shiftsF(ω) maxima to lower frequencies
shoulders or minor second maxima become apparent for m
13CαH and15NH groups. As mentioned above, slower overa

molecular tumbling should lead to better separation of over
tumbling and internal motional correlation times as these d
thisF(ω) plot due to the use of the log scale.
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attest. From the position of these shoulders or minor sec
maxima, internal motional frequencies are estimated to ra
from a few hundred picoseconds to near one nanosecond.
13CαH groups of F2, L7, and A8 at 5◦C, a high-frequency shoul-
der is positioned at about 1000 to 2000 MHz, whereas for15NH
groups of these same residues, the high-frequency side ofF(ω)
shows more of a second maxima centered at about 500 M
As with the peptide in water, in water/TFE internal motion
of N-terminal residue F2 contribute toF(ω) more than overall
tumbling motions and more than do internal motions of oth

all
ata
residues within the more well-foldedα-helical part of the pep-
tide (residues A5 to A13).
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FIG. 10. FunctionsF(ω) have been calculated using experimental data for five15NH backbone bonds (residues F2, A5, L7, A8, and A10) in theα-helix-forming
◦
peptide in water and in water/TFE. Data are shown for temperatures from 5 to 30C. Solid circles on the curve represent frequenciesωC(N) andωC(N)±ωH at

which experimental data were collected. The value atJ(ω) = 0 is not shown on thisF(ω) plot due to the use of the log scale.
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To more accurately determine internal motional frequenc
F(ω) has been deconvoluted into components for overall t
bling, Fo(ω), and for internal motions,Fi (ω), using the deconvo
lution procedure described in the previous section. The accu
of deconvolution, of course, depends on the separation of i
nal motional and overall tumbling correlation times. Errors
smaller when contributions fromFi (ω) and the difference bet
ween overall tumbling and internal motional correlation tim
are relatively large. In water, overall tumbling and internal m

tional correlation times are closer together than in water/T
and contributions fromFi (ω) are relatively small, resulting in
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ies,
m-
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a less accurate determination ofFi (ω). Nevertheless, from th
shape ofFi (ω), it may be concluded thatFo(ω) in water cannot
be described by a single Lorentzian, particularly at low tem
ature, indicating the presence of a broad distribution of ove
correlation times, which, in turn, is related to the presence
relatively broad distribution of rapidly interconverting spec
of folded and unfolded peptide.

Because contributions fromFi (ω) and the difference betwee
overall tumbling and internal motional correlation times
larger in water/TFE wherein the peptide is also more fold

only these data will be presented. To exemplify results from



T

5
e

ould
ecific

the
other
the

t
s of
an
than
n

ation
ster

ed
VISUALIZING SPECTRAL DENSI

FIG. 11. Deconvolution procedure for15NH and13CαH groups of residue
L7 from theα-helix-forming peptide in water/TFE. The deconvolution of pare
functions F(ω) (solid lines) into component functions for overall tumbling
Fo(ω), and internal motions,Fi (ω), are shown for two temperatures, 5 an
30◦C, as indicated. Component functionsFo(ω) andFi (ω) are plotted in panels
on the left (dotted lines) and on the right (solid lines), respectively.

this deconvolution procedure, Fig. 11 plots the parent funct
F(ω) and derivedFo(ω) and Fi (ω) components for L713CαH
and 15NH groups of the peptide in water/TFE at 5 and 30◦C.
For these two temperatures, the parent functionF(ω) is plotted
as solid lines and the component for overall tumbling,Fo(ω), is
plotted as dotted lines.Fi (ω) components are plotted in separa
panels at the right in this figure. Within this frequency regim
Fi (ω) indicates that internal motional correlation times are d
tributed around 200 to 300 ps for the NH group and around
to 700 ps for the CαH group. As shown in Fig. 12, results ar
for the most part, similar for other residues (A5, A8, and A1
within the helical segment of the peptide. This is more true
CαH groups. For NH groups of A8 and A10, however,Fi (ω) dis-
tributions are on the rise over this frequency range, but app
to be peaking around a smaller correlation time near 100 ps

a few cases,Fi (ω) is not very well defined. For example, fo
A5 CαH at 5◦C, Fi (ω) is rather flat, not highly populated and
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tends to grow only at the highest frequencies shown. This c
occur because the relaxation data acquired under these sp
conditions were not optimal or that the contribution fromFi (ω)
to F(ω) was so small as not to be accurately definable. Since
experimental data look as good as those acquired under
conditions, the later possibility is the more probable. For F2,
deconvolution procedure produced a reasonableFi (ω) distribu-
tion for the13CαH group, but not for the15NH group (data no
shown). In Fig. 9 it was already apparent that internal motion
the F215NH group occured primarily at frequencies higher th
those accessible experimentally, i.e., correlation times less
100 ps. For the F213CαH group, internal motional correlatio
times were about the same as those for13CαH groups within the
helix segment.

One of the main observations that arises from these correl
time distributions is that internal motions are somewhat fa

FIG. 12. Deconvolution procedure for15NH and13CαH groups of residues
A5, A8, and A10 from theα-helix-forming peptide in water/TFE. As discuss
in the text, the deconvolution of parent functionsF(ω) into component func-
tions for overall tumbling,Fo(ω), and internal motions,Fi (ω), are shown for
rthree temperatures, 5, 15, and 30◦C, as indicated in the figure. Only component
functionsFi (ω) are shown.
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for NH bond vectors than for CαH bond vectors. Slower interna
motions for backbone CαH groups are probably related to the fa
that CαH bond motions are more restricted than are NH bo
motions. Idiyatullinet al. (19) have shown that for this sam
peptide in water/TFE, amplitudes of rotations in helix resid
A5, L7, A8, and A10, are, on average, smaller for CαH bonds
(about 15◦) than for NH bonds (about 25◦). CαH bond motions
are influenced by the presence of the amino acid side ch
which may act to dampen CαH bond motions. Depending on th
potential energy landscape for overall internal motions of
peptide, greater motional constraints of one vector relativ
another could result in lower motional frequencies as obse
here for CαH groups. It is also possible that the component
overall tumbling,Fo(ω), also contains contributions from slowe
internal motions that fall coincidently within that compone
of the parent functionF(ω). However, for this to occur, the
distribution would have to be as symmetric asFo(ω), which is
probably unlikely.

Internal motions of backbone bond vectors occurring on
time scale 100 ps to 1 ns are not uncommon. Using15N NMR
relaxation data, Cloreet al. (33) found that 32 residues of th
protein interleukin-1β display motions on a time scale of 0.5
4 ns, slightly less than the overall molecular rotational corre
tion time of 8.3 ns. Internal motions occurring on the nanosec
time scale have also been observed using other techniques
example, analysis of fluorescence data on the peptide me
revealed anisotropic internal motions of the single tryptop
on a time scale of 140 to 720 ps (34), and Tamuraet al. (35)
used solid state deuterium NMR to demonstrate that the me
group axes of three methionines in the Streptomyces subti
inhibitor protein undergo internal motions with correlation tim
between 0.1 and 10 ns.

Application to a Compactly Folded Protein

As discussed and exemplified above, slower overall molec
tumbling of the helix-forming peptide in TFE relative to wat
led to a shift in theF(ω) maximum to lower frequency and bett
separation of overall tumbling and internal motional correlat
times. In this section, this new approach to visualizing spec
density functions is exemplified using 2D NMR13C/15N HSQC-
derived relaxation data (Changet al., data and complete analys
to be published elsewhere) on a larger, compactly folded
tein, the 138-residue regulatory protein, component B (MMO
from methane monooxygenase (20). The NMR-derived solu-
tion structure of MMOB shows the presence of a well-orde
core region (residues 36–126) and highly mobile, disordere
(residue 1–35) and C-terminal (residues 127–138) regions20).
The compactly folded core region of MMOB is composed of t
folding domains: oneβαββ and oneβααββ. To exemplify the
new approach on this system, Fig. 13 (left panels) plotsF(ω)
for 15NH and 13CαH motional vectors of five residues, A26

D71, K72, F75, and A80. Solid circles on the curve repres
frequenciesωC(N) andωC(N) ± ωH at which experimental data
GAN, AND MAYO
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FIG. 13. FunctionsF(ω) have been calculated using experimental data
five 13CαH and15NH backbone bonds (residues A26, D71, K72, F75, and A
in the compactly folded, 138- residue protein MMOB in water at 30◦C. These are
displayed in the left-hand panels, and solid circles on the solid curves repr
frequenciesωC(N) andωC(N) ± ωH at which experimental data were collecte
The value atJ(ω) = 0 is not shown on thisF(ω) plot due to the use of the
log scale. The deconvolution procedure has been applied to15NH and13CαH
groups of these same residues of MMOB. As discussed in the text, the p
functions,F(ω), have been deconvoluted into component functions for ove
tumbling, Fo(ω), and internal motions,Fi (ω). The component functionsFi (ω)
are shown in the right-hand panels.

were collected.J(ω) = 0 is another point on theF(ω) curve,
but its value is not shown on this plot due to the use of the
scale. Residue A26 is part of the mobile and structurally di
dered N-terminal segment, and the other four residues are
of β-strands 2 (residues 67–72) and 3 (residues 75–80). T
two β-strands are part of the anti-parallelβ-sheet in theβαββ
domain. Figure 13 (right panels) also plots the functionFi (ω)
that was derived by deconvolution ofF(ω) as discussed in th
previous section.

First, note that in Fig. 13 the low-frequency maxima ofF(ω)
for β-sheet residues D71, K72, F75, and A80 are shifted
lower frequencies compared to those for the helix-forming p
enttide in water. This is expected because MMOB is larger and
more compactly folded than the peptide. From the inverse of
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the frequency at the maximum ofF(ω), an average overall tum
bling correlation time,τo, of 9 ns can be estimated for MMOB
Using the Lipari–Szabo approach, the averageτo is essentially
the same, 8.3 ns. Moreover, because MMOB is a larger sys
slower and faster motions are better seperated. For exam
for 13CαH groups of residues D71 and A80 and for the15NH
group of A80, two maxima are clearly differentiable on t
high-frequency side ofF(ω). From the position of these secon
maxima, internal motional frequencies are estimated to ra
from several hundred picoseconds to near one nanosecond
other13CαH and15NH groups, high-frequency shoulders are p
sitioned at or near the one-nanosecond mark. In addition, f
the distribution of motions inF(ω), contributions from interna
motions appear to be nearly the same as from overall tumb
A26 was chosen to exemplify a more internally mobile resid
In this case,F(ω) is weighted more on the high-frequency sid
indicating the greater importance of internal motions to spec
density functions for13CαH and15NH groups of A26.

To more accurately determine internal motional frequenc
F(ω) has been deconvoluted into components for overall tu
bling, Fo(ω), and for internal motions,Fi (ω), using the decon
volution procedure described in the previous sections.Fi (ω) is
shown in panels at the right in Fig. 13. Compared to data on
helix-forming peptide presented above, these data on MM
yield more accurateFi (ω) curves because of the better sepa
tion of internal motional and overall tumbling correlation time
Within this frequency regime,Fi (ω) indicates that internal mo
tional correlation times for D71, F75, and A80, for example,
distributed around 1 ns for their NH groups and around 800 p
their CαH groups. Interestingly, internal motions for NH bon
vectors are somewhat slower than for CαH bond vectors. The
opposite was observed with the helix-forming peptide. Slo
internal motions for backbone NH groups may be related to
fact that these NHs in MMOB are involved in hydrogen bond
within theβ-sheet, and therefore these NH motions are so
what more restricted than are their CαH bond motions. On the
other hand, the same trend is observed with A26, which is
part of the well-folded core of MMOB. With A26, however, th
situation is complicated by the fact that internal motions app
to contribute more to the spectral density functions and inte
and overall motional correlation times are less well separa
In this regard, the exact reason(s) for the occurrence of inte
motions of NH groups on a time scale slightly slower than tha
CαH groups is (are) unknown. In any event, this new appro
provides a relatively good way for deriving internal motion
correlation time distributions in peptides and proteins.

CONCLUSIONS

Although standard, commonly used analyses of NMR re
ation data, e.g., the Lipari–Szabo approach, provide corr
tion times for overall molecular tumbling,τo, and for internal

motions,τi , along with an order parameter,S2, only the cor-
relation time for overall tumbling and the order parameter c
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be determined reasonably accurately, and at that, only if
molecule is globular and symmetrically shaped. In this rega
the best that can be derived from such analyses in term
internal motions is some indication of internal motional restr
tion from the order parameter, but not an accurate determina
of the motional frequencies themselves. In this regard, us
this new approach, i.e., the functionF(ω) = 2ωJ(ω), to de-
scribe molecular motions has several advantages. For on
provides a relatively simple visualization of the distribution
correlation times for molecular motions and their contributio
to the spectral density function, and it is fairly straightforwa
to separate overall molecular tumbling and internal motions
curring on the picosecond-to-nanosecond time scales. Furt
more, this approach demonstrates a low sensitivity to the num
of Lorentzians used to describe these molecular motions.
examples of theα-helix-forming peptide and well-folded pro
tein MMOB presented here indicate that as the overall tumbl
correlation time (molecular size) increases, i.e., the system
comes larger, the generally higher frequency internal motio
components become better defined inF(ω) and therefore more
accurately determinable.
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